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Experimental Investigation of Thermal Annealing

of Nuclear-Regctor—Induced Coloration in Fused Silica
SUMMARY

An experimental investigation was conducted to determine the spectral trans-
mission characteristics of fused silica over a range of temperatures prior to
nuclear irradiation and during thermal annealing of reactor-induced coloration
following exposure to a dose of 6 x 10 T nvt fast neutrons per cme° The investi-
gation was conducted using commercially supplied specimens of Corning 7940, Amersil
Infrasil, and Thermal American Spectrosil brands of fused silica which were selected
because of their high purity but which were found to differ slightly in chemical
composition. The pre-irradiation studies were carried outat a series of fixed
temperatures. The annealing studies were carried out using both ramp variations
of temperature with time and step-~wise variations of temperature with time for
temperatures between 22 and 1000 C. Most of the annealing data were obtained
at a wavelength of 0.21 microns, although some annealing data were obtained
following step-wise changes in temperature at wavelengths between 0.15 and 4.o.
microns. Spectral transmission measurements also were made at wavelengths between
0.15 and 4.0 microns for all samples before nuclear irradiation and after thermal
annealing.

The results of the tests indicate that nuclear-reactor-induced coloration
is greater and more difficult to remove in the ultraviolet portion of the spec-
trum than in either the visible or the infrared portions of the spectrum.
Induced coloration in the ultraviolet is annealed out at temperatures between
700 and 900 C, and the rate of annealing corresponds to activation energies
of between 2.2 and 2.8 eV in a first-order kinetic annealing process with a
frequency factor of 1010 sec™l. The three brands of fused silica in order of
their degree of induced coloration and the difficulty of annealing this induced
coloration were: Amersil Infrasil, Corning 7940, and Thermal American Spectrosil.

This investigation was carried out under Contract NASw-T68 with the National
Aeronautics and Space Alministration through the joint AEC-NASA Space Nuclear
Propulsion Office.



RESULTS

l. Pre-irradiation studies of the optical transmission characteristics of
fused silica indicated that:

a. The ultraviolet wavelength below which the absorption coefficient
is greater than 1.0 cm™t was approximately equal to the following
values at temperatures of 22 and 800 C, respectively: 0.154 and
0.170 microns for Thermal American Spectrosil, 0.159 and 0.176
microns for Corning 7940, and 0.162 and 0.180 microns for Amersil
Infrasil.

b. The absorption coefficient was too low to be measured (less than
0.002 cm‘l) in the portion of the spectrum between 0.3 and 1.0
microns for all specimens tested at temperatures between 22 and
1000 C.

c. The Thermal American Spectrosil and Corning 7940 specimens
exhibited absorption bands at wavelengths of 1.4, 2.23, and
2.8 microns (the 2.8-micron band is normally attributed to
entrapped water) at both 22 and 800 C; these absorption bands
were much less pronounced in the Amersil Infrasil specimens.
The absorption coefficient of all samples tested was greater
than 1.0 em~t at wavelengths greater than 3.6 microns at both
22 and 800 C.

2. Nuclear-reactor irradiation to a dose of 6 x lO17 nvt fast neutrons
per cm® with the specimens at room temperature caused the following:

a. Increases in absorption coefficient for all specimens of between
10 and 50 cm'l at wavelengths less than 0.3 microns. A portion
of this absorption was associated with a band centered at a
wavelength of approximately 0.210 microns.

b. Increases in absorption coefficient of between 1.0 and 6.0 em~t
for Amersil Infrasil specimens, and increases in absorption
coefficient of less than 0.2 em™d for Corning 7940 and Thermal
American Spectrosil specimens at wavelengths between 0.35 and
0.8 microns.

c. Increases in absorption coefficient of less than 0.05 em~! for
all specimens at wavelengths greater than 1.4 microns.




3. The ease of removing the nuclear«reactor-induced color in ithe ultraviolet
for the brands employed was in the order: Thermal American Spectrosil, Corning
7940, and Amersil Infrasil. For example, during annealing tests conducted using
continuous variations of temperature with time, the reactor-induced_sgbsorption
coefficient at a wavelength of 0.21 microns was reduced to 0.05 ecm — at a
temperature of approximately 720 C for Thermal American Spectrosil, 750 C for
Corning 7940, and 900 C for Amersil Infrasil. Tests conducted with the specimens
held at a series of fixed temperatures during the annealing process indicated
that the rate of annealing was independent of wavelength for wavelengths between
approximately 0,17 and 0.25 microns.

., Reactor-induced coloration in the visible and infrared portions of the
spectrum was annealed out at temperatures below 600 C for all specimens studied.

5. Activation energies calculated for a first-order annealing process
@assuming a frequency factor of 1010 sec”l) from the variation of reactor-induced
absorption coefficient with time during the annealing process were between 2.2
and 2.6 eV for Thermal American Spectrosil and Corning 7940, and between 2.2
and 2.8 eV for Amersil Infrasil. Calculated activation energies were approximately
0.8 eV higher for a frequency factor of 10t secl than for a frequency factor
of 1010 gec™t

6. Spectral transmission data measured following complete annealing were
in agreement with spectral transmission data measured before irradiation within
the accuracy of the procedures employed.

7. The indicated optical transmission of the fused silica specimens employed
was influenced by their heating history and surface condition.

INTRODUCTION

1t is desirable in many applications to employ a material which is trans-
parent to optical radiation over a wide range of wavelengths in a nuclear radia-
tion environment. Two competing processes will affect such applications: first,
coloration induced by nuclear radiation; and second, annealing of coloration by
exposure to elevated temperatures. Therefore, it would appear possible to reduce
the coloration present in a transparent material while it is in a nuclear environ-
ment by maintalning it at an elevated temgperabure.



The only available data concerning annealing of reactor-induced coloration has
been obtained from room-temperature measurements following exposure of the irradiated
specimen to high temperatures (see, for example, Refs. 1 and 2). The results of these
experimental studies indicate that reactor-induced color in fused silica can be annealed
by exposure of the specimens to tempersatures between 700 and 1000 C. However, these
experiments have not yielded information concerning the rate of annealing of the reactor-
induced coloration. Such rate information is required, as well as information on the
rate of creation of coloration, to permit determination of the temperature dependence
of the equilibrium coloration during the combined processes of reactor-induced color.-
ation and of thermal annealing.

Therefore, a program was initiated at the United Aircraft Research Laboratories
to obtain annealing-rate information. The first portion of this program was the
development, under Corporate sponsorship, of a spectrophotometer which could be
employed to obtain transient transmission characteristics of high-temperature trans-
parent specimens. The second portion of this program, the actual measurement of
rates of annealing for fused silica, was carried out under sponsorship of the National
Aeronautics and Space Administration, and is described in the following sections.

DESCRIPTION OF EQUIPMENT

UAC High-Temperature Spectrophotometer

Spectrophotometer Description

The UAC high-temperature spectrophotometer is a duval-beam instrument which measures
the spectral transmission characteristics of optical materials when the specimen under
study is at any temperature between 22 and 1100 C. This spectrophotometer is comprised
of three chambers as shown in Fig. 1. The portions of the instrument corresponding
to the numbers in Fig. 1 are listed in Fig. 2. The largest chamber contains the
monochromator section, ultraviolet, visible and near-infrared sources, infrared thermo-
couple detector, and collimating and beam-splitting mirrors. Radiant energy from
either of the two sources located in this chamber is selected and focused by the
spherical condensing mirror into the entrance slit of the monochromator. The mono-
chromator section is of basic Littrow design utilizing an off-axis parabolic mirror
to collimate light from the entrance slit onto the plane diffraction grating and to
focus the diffracted light from the grating to the exit slit. Four diffraction
gratings are utilized to cover the spectral range of operation and are mounted on a turn-
table. The monochromatized energy emerging from the exit slit is collimated by another



off-axis parabola and then directed by two circular plane mirrors through the chopper
system into the furnace chamber. Two furnace tubes are used to mount and to heat

the specimens. Each furnace is comprised of a 12-in.-long, 1 l/h-in.ndia, 0.020-in.-
wall tantalum tube supported at eachend by water-cooled copper electrodes. These
electrodes are carbon lined to allow the tantalum tubes to slide as they elongate at
elevated temperatures. After passing through the sample chamber the transmitted
energy enters the third chamber and is directed by two circular plane mirrors onto the
photomultiplier or the lead sulfide detector. The lead sulfide detector is mounted
on a turntable and may be positioned directly in front of the photomultiplier. The
infrared source system located in this chamber consists of a Nernst glower to provide
radiant energy and an arsenic trisulfide lens to collimate this energy. Mounted on
the same turntable with the lead sulfide detector are a pair of rectangular plane
mirrors which direct the radiant energy from the infrared source system to circular
plane mirrors and thence into the sample chamber and on to the monochromator section.
Theege three chambers are connected with high-vacuum ball valves so that the furnace
chember may be opened independent of the rest of the system for the insertion or
removal of sample specimens. The whole system is capable of being evacuated to

20 mm of Hg or can be run when filled with an inert gas. It has been the practice
to operate the instrument with the chambers filled with argon.

The radiant energy in the ultraviolet, visible, and near-infrared regions are
monochromatized before entering the sample chamber whereas the infrared spectrum
is monochromatized after sampling. There are two reasons for this configuration;
monochromatizing of the shorter wavelengths is done initially to eliminate or
minimize any optical bleaching of a colored sample which may occur by allowing the
full ultraviolet spectrum to be incident upon the sample, while monochromatizing
of the longer wavelengths is done terminally to minimize the amount of direct
furnace and sample radiation incident upon the thermocouple detector when running
the system at elevated temperatures. In addition to the reversed optical beam
paths, the optical chopping for each beam direction is accomplished prior to
entering the furnace chamber so that any furnace radiation which may be directed
onto the operating photodetector will produce a constant signal and thus not be
passed by the chopper rectification circuitry to affect the recorded signal. Output
is presented onto a recording strip chart which displays the ratio of energy trans-
mitted in the sample beam to that transmitted in the reference beam with respect
to wavelength.

Spectrophotometer Optical Specifications

The spertral wavelength range of operation for the high-temperature spectro-
phohometer is 0.15 to 4.5 microns. 1In covering the full spectrum, several light
sources, detectors and dispersing elements are required, and are summarized in
Table I. The four different gratings were chosen so thet the blaze angle (angle



at which the grating grooves are cut) would concentrate first-order diffraction in
the appropriate ranges. Theoretical resolving powers for the instrument are
0.00005 microns at 0.2 microns, and 0.0004 microns at 2 microns. However, because
of energy requirements, the normal band pass at which specimens have been skudied
are 20 A in the visible and ultraviolet (wavelengths between 1500 and 7000 A)

and 0.02 microns in the infrared (wavelengths between 1.0 and 4.5 microns). These
are sufficiently narrow band passes, since the materials to be examined do not
have sharp absorption bands.

The particular type of optical beam chopping and signal rectification
circuitry employed in the high-temperature spectrophotometer requires that a
positive and therefore recordable "zero" signal be present even when the sample
beam is blocked. This is accomplished by introducing a small percentage (referred
to as the percent of phasing) of the reference signal into the sample signal. The
accuracy with which transmittance data may be obtained on the high-temperature
spectrophotometer is dependent upon this percent of phasing. Table II compares
the transmittance values obtained by measuring ten neutral-density filters and
screens varying in transmittance from 97.7 percent to 12.2 percent on a Cary-14R
spectrophotometer and subsequently on the high-temperature spectrophotometer at
three different percents of phasing. In general, the tests discussed in the following
sections were conducted using one-percent phasing. The average difference in the
transmission measurements for one-percent phasing is + 0.3 percent as shown in
Table II. In some cases the deviation is larger than one-percent arising from the
fact that the filters are not uniform over the area through which the optical beam
passes. An accuracy in transmittance of + 0.3 percent corresponds to a measure-
ment of the absorption coefficient of a 30-mm sample to within + 0.001 cm”— when
T= 95 percent. Table III shows the accuracy of the measurements of @ for two-
specimen thicknesses at a range of transmissivities. The standard deviation of
the reproducibility of the transmittance data at 0.475 microns is 0.5 percent as
shown in Fig. 3. Measurements were made at wavelengths in the different spectral
regions and show, in Fig. 3, the transmittance data reproducibility of the spectro-
photometer over a 10-day period.

Wavelength calibration of the spectrophotometer was performed using inter-
ference filters. As a typical example of the reproducibility of these measure-
ments, Fig. 4 is presented showing the scatter obtained at a wavelength of 0.39016
microns. This measurement can be made to within + 0.00007 microns. Since this
indicates the reproducibility with which the grating normal may be located with
respect to the incident beam, similar values may be obtained for the other spectral
regions. In the ultraviolet the measurements can be obtained to + 0.0001k microns
and in the infrared to + 0.00056 microns.



Measurements of Transmission Properties

The dual-beam design of the high-temperature instrument, in which the ratio
of the transmitted energies of the two beams is measured, allows specimens to be
studied in either a two-specimen or one-specimen mode of operation, as illustrated
in Fig. 5. In the two-specimen mode, a thick specimen is placed in the sample beam
and a thin specimen in the reference beam. In this mode, the transmissivity of the
net specimen thickness (difference between sample and reference thicknesses) is
measured directly since the identical reflection losses of each sample do not appear
in the recorded ratio as shown in Fig. 5. The spectral absorption coefficient,
a)’T , is then obtained employing the measured transmissivity and a form of the
Lambert-Beer Law:

T = o AT XX (1)

where Xg = sample specimen thickness
Xy = reference specimen thickness
T = transmissivity

Measurements of transmissivity and absorption coefficient are made by using
the two-specimen mode of operation in the following way. Three spectral runs are
made over the spectral range of interest: (1) a 100-percent transmissivity run
(ro specimens in either beam); (2) a zero transmissivity run (sample beam com-
pletely blocked and no specimen in the reference beam); and (3) a sample run
(sample and reference specimens in their respective beams). The transmissivity
is obtained from these three runs from the following equation.

__ Sample value (3) - zero value (2)

T -
Xs=Xr 7 100% value (1) - zero value (2) (2)

Transmittance data are obtained by operating the spectrophotometer in the one-
specimen mode with the specimen placed in the sample beam and performing the same
operations as above (Eq. (2)). To obtain detailed information concerning the spec-
tral absorption edges in the ultraviolet and infrared regions where @ is greater than
1.5 cm'l, it is necessary to study thin specimens using the one-specimen mode of
operation. Thin specimens are required because the transmissivity of a 30-mm speci-
men is 1.1 percent when @ = 1.5 cm'l, but a l-mm specimen has a transmissivity of
86 percent at a@a= 1.5 cm’l, and 13.6 percent at @ = 20 cm™l. Furthermore, the one-
specimen mode of operation is required since the insertion of a specimen into the
reference beam raises the spectrophotometer cut-off wavelength to a value dependent



upon the specimen's thickness, material, and temperature. For example, a l-mm
Thermal American Spectrosil specimen in the reference beam increases this cut-off
wavelength from 0.150 to 0.158 microns. Therefore, measurements cannot be made
below this wavelength using the two-specimen mode of operation.

The transmittance as measured includes reflection losses since, in this case,
the compensating reflection losses are not present in the reference beam. The
transmittance is related to the absorption coefficient as shown in Fig. 5 by the.
relation

- 2 _-~-a X
I/Ty (I-pyp e "AT7s

(3)

where I,/1, = transmittance of specimen
pA,T = surface reflectivity
ay = absorption coefficient
Xq = specimen thickness

The absorption coefficient can be obtained from Eq. (3) if the reflectivity is
known, or by measuring the transmittances of two samples of different thicknesses.
The ratio of the transmittances of two specimens of different thicknesses yields
the absorption coefficient from the relation

I./1 - -
s’ "o _ e a)\,T(xS Xr) (%)
I,/I4
where I,/1, = transmittance of thick specimen

I,/I, = transmittance of thin specimen

The technique employed to obtain the data shown "in each figure is noted in the
relevant portion of the text.

Temperature Calibration

When taking transmission data with the specimen above room temperature, it is
necessary to have a correlation between monitored furnace temperature and actual
specimen temperature. Both furnace tubes are instrumented with thermocouples to
provide a means for measuring high temperatures. To provide a time correlation
between specimen temperature and furnace temperature a 30-mm specimen was instrumented
by drilling three holes, 15-mm deep, and inserting thermocouples at the center, at
one-half the radius and at nine-tenths the radius. Various time-versus-temperature



programs were obtained using this instrumented specimen in the sample furnace tube.
Tigure 6 is a plot showing the temperature of the specimen center line and furnace
during an 88-min linear ramp from 200 to 1000 C and Fig. 7 shows the specimen response
for a 6-min change of furnace temperature from 200 to 1000 C. Additional programs
were obtained for - and 150-min linear ramps. The L4~ and 88-min ramps and some
step programs were used in the annealing of the reactor-induced coloration. When the
specimen is held at constant temperature, the difference between the monitored furnace
temperature and the actual specimen temperature is less than one deg C and this condi-
tion is reached in approximately 1.5 min at the desired constant temperature.

Cary Model 1hR

Some measurements were obtained using the Cary Model 14R spectrophotometer. The
Model 14R is a dual-beam instrumgnt with a wavelength range og 0.2 to 2.5 microns
with a wavelength accuracy of I A and reproducibility to 0.5 A. It records absorbance
in a range of from O to 2.0 optical density units to within + 0.002 0.D. The optical
density is related to the transmittance in the following way:

1 (5)
0.D. = log)g Ig/I

Measurements performed on the Cary 1LR must be made with the specimen at room tempera-
ture, hence, the variation of transmissivity with temperature cannot be measured on
this irstrument. This instrument was used for calibrating the transmittance scale

of the high-temperature spectrophotometer.

SPECIMEN DESCRIPTION AND HANDLING HISTORY

The specimens used for the optical transmissivity studies were fused silica of
the following brands and types: Amersil "Infrasil", Corning "7940", and Thermal
American "Spectrosil'". They have been designated SA, SC, and ST, respectively, "g"
referring to "silica" and the second letter to the manufacturer. Numbers following
these letters represent the length of the specimen, and the specimen number. For
example, SC 2-11 denotes silica, Corning 7940, 2 mm, specimen No. 11.

The specimens used were of thicknesses 1, 2, 8, and 30 mm. Meximum accuracy
in the determination of absorption coefficient was obtained by using thick specimens
in wevelength regions of low absorption and thin specimens in wavelength regions of
high absorption. Each specimen was polished by the manufacturer to a flatness of
one~half wavelength, sodium "D" line, and a parallelism of 0.025 mm or better. Each
specimen was 25 mm in diameter.



Two of the three types of fused silica tested, Corning 7940 and Thermal
American Spectrosil, were reported by the manufacturer to have good transmission
characteristics in the ultraviolet, while Amersil Infrasil was reported to have
good transmission characteristics in the infrared. It will be shown in following
sections that the two types of fused silica which transmit further into the ultra-
violet have poor transmission in the infrared, while the fused silica which has
good transmission in the infrared does not transmit as far into the ultraviolet.
Preliminary tests also were conducted using a fourth type of fused silica, Amersil
Ultrasil, which was reported to have good transmission characteristics in the
ultraviolet. However, no further tests of this material were conducted because
the transmission in the ultraviolet was poorer than either Corning 7940 or Thermal
American Spectrosil, and because there was a large difference in ultraviolet trans-
mission from sample to sample.

The results of a spectrochemical analysis of each type of fused silica are
summarized in Table IV. The accuracy of the analysis is approximately + 50 per-
cent. The major differences between the impurities in the samples analyzed are
40 ppm Al in the Amersil as compared to 2 ppm Al for Corning and 1 ppm for Thermal
American, and 20 ppm Na in the Thermal American as compared to less than 5 ppm
Na for the Corning and Amersil brands.

The handling procedure for the specimens included a number of cleaning
processes. Initially the specimens were cleaned with an organic solvent such
as acetone or alcohol, cleaned in a soap solution in an ultrasonic cleaner, then
rinsed in distilled water. After the pre-irradiation studies had been completed,
the same cleaning process was repeated prior to encapsulation for irradiation.
Some specimens also were cleaned chemically using chromic acid (sodium dichromate
or potassium dichromate). Table V summarizes the handling and cleaning history
for all specimens.

Prior to irradiation at the Union Carbide Nuclear Research Reactor Facility,
all specimens were packaged in clean aluminum foil and packed in an aluminum tube.
To insert the samples into the reactor this aluminum tube was closed by welding
and inserted in an aluminum filler container of sufficient size to fill the
stringer tube which allowed the sample to be placed in the core of the nuclear
reactor. The aluminum filler container was used to exclude the reactor cooling
water from the stringer tube, so that the generation of thermal neutrons due to
moderation of fast neutrons by the water would be minimized. In general, it was
found that contamination of the samples due to their exposure to the nuclear-
reactor irradiation consisted of by-products from the aluminum-to-sodium transition
which occurred in the aluminum container. A sufficient decay time for safe handling
was allowed at the Union Carbide Nuclear Research Reactor Facility. Samples were then
shipped to the Research Laboratories where they were cleaned again in an ultrasonic
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cleaner using soap and water solution plus special cleaning agents. In some cases,
the chromic acid glass cleaning solution was used. The cleaning procedure was
continued until the contamination of the samples was shown to be negligible.

The monitors for flux determination to obtain the radiation dose given the
specimens consisted of nickel wires and cadmium shielded and unshielded gold
wires placed next to the specimens during the irradiation. The results of the
monitoring procedure show a negligible variation in dose given specimens in the
various positions during any single exposure, and only small differences in total
dose given each of the three groups of specimens irradiated. Table VI gives the
specific results for each specimen, and Table VII gives the variation of flux
with position.

FACTORS AFFECTING DATA REPRODUCIBILITY

A series of factors have been encountered in the test program which can
lead to inconsistencies in the data. For instance, the initial experiments with
the Amersil Infrasil fused silica showed that the transmission properties of
the specimens changed after they were heated either in argon or in air. The
transmissivity measured on a specimen at 800 C as received from the manufacturer
was greater than the transmissivity obtained with the same specimen at 22 C
prior to heating at wavelengths in the ultraviolet portion of the spectrum.
After this specimen had been heated, its transmissivity properties became stable
as a function of temperature. A second specimen was pre-heated to 850 C prior to
transmissivity measurements. The transmissivity of this pre-heated specimen is
reproducible at temperatures of measurement below 850 C, and drops with increased
specimen temperature. Figure 8 compares the transmissivity of the pr-heated
Amersil 30-mm specimen SA 30-5 with the transmissivity of the non-pre-heated
Amersil 30-mm specimen SA 30-2, at 22 C and at 800 ¢, illustrating this effect.
Since the effect of heating proved irreversible, all specimens employed in sub-
sequent tests were conditioned by heating for one hour at 850 C prior to trans-
missivity measurements. The changes observed with the heat treatment may be due
to the relieving of strains induced by the polishing procedure.

A decrease in specimen transmissivity in the ultraviolet portion of the spec-
trum at all specimen temperatures was found in conjunction with tests in which the
specimen was held at 1075 C for a period of approximately 10 min. Figure 9 sum-
marizes the measurements of transmittance taken at 22 ¢, 800 C, and 1075 C before
and after the 10-min exposure to 1075 C for the pre-heated specimen SC 2-10. The
data taken after the heat treatment at 1075 C (solid lines) indicates lower trans-
mittance than the data taken prior to the heat treatment (dashed lines). However,
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data taken after subsequent exposure to 1000 C for units of time totaling 30 min
indicated no further change in transmittance due to heating the specimen. This

same effect--a decrease in transmittance after exposure to 1075 C--for preheated
specimens occurred for Corning :'am specimens ST 2-11 and SC 1-1, as shown in Fig. 10.
The test results shown in Fig. 10 were obtained before the irradiation studies of
these specimens.

In one early test it was found that a film was present on the faces of the
specimen. An X-ray diffraction investigation identified this film as @ -quartz,
showing that the surface of this specimen had devitrified after only a few minutes
at temperatures of 950 C or less. A series of tests indicated that the observed
film was the result of surface impurity catalyzation of the phase transformation:
glassy phase fused silica - crystalline quartz. Precautions were taken in all
following tests to avoid any surface contamination of the specimens which would
result in such films.

The surface-impurity-catalyzed devitrification prompted an investigation into
the specimen cleaning procedures used. A comparison was made of the transmittance
of Corning 2~-mm specimen SC 2-10 (which had been chemically cleaned with hot chromic
acid} with that of Corning 2-mm specimen SC 2-11 (cleaned with solvents and deter-
gents)° Although the data, given in Fig. 11, shows that the chemically cleaned
specimen has consistently higher transmittance at 22 C in the ultraviolet than the
specimen not chemically cleaned, the difference in transmittance is of the same
order of magnitude as that which has been observed between other specimens from the
same manufacturer which had not been chemically cleaned. Therefore, it cannot be
concluded definitely that the improvement in the 22 ¢ transmittance is due to
chemical cleaning. It is to be noted, however, that the transmittance of the
chemically cleaned specimen always decreased with increasing specimen temperature.
This was not always the case with specimens not chemically cleaned, both thick and
thin. ©Such results are illustrated in Figs. 12 and 13. For Thermal American
30-mm specimen ST 30-1 in Fig. 13, the indicated transmissivity at wavelengths
between approximately 0.190 and 0.300 microns is greater than 100 percent at a
temperature of 800 C, although it is approximately equal to 100 percent for wave-
lengths greater than 0.300 microns. Data obtained at room temperature subsequent
to heating to 800 C was in agreement with that obtained prior to heating to 800 C.

ransmissivities greater than unity can be explained only by the assumption of high
spectral absorption or scattering of light by the l.mm specimen in the reference
beam of the spectrophotometer. The cause of such a charactericstic in the 1l-mm
specimen 1s not known.
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The effects discussed in preceding paragraphs were encountered primarily in the
ultraviolet portions of the spectrum, and little or no effect was noted in the
visible and infrared regions. It is obvious that many more tests are required to
investigate all of the factors which affect the ultraviolet transmission of fused
silica.

PRE-NUCLEAR-REACTOR-TRRADTATION STUDIES OF OPTICAL TRANSMISSION

The purposes of the pre-irradiation studies were two-fold: to study the
reversible effects of temperature on the transmission properties of fused silica,
and to establish a basis for comparison of transmission properties to be measured
after the anneal of radiation-induced color. As discussed in preceding sections,
several effects were noted in conjunction with the transmission properties of the
specimens at temperatures between 22 and 1000 C which limit the accuracy of the
absorption coefficient data. Representative data showing the effects of tempera-
ture on the transmission properties for 30-mm specimens of each brand are presented
in Figs. 14 through 22. Measurement conditions concerning wavelength and tempera-
ture for all specimens are summarized in Table VIII. The Thermal American Spectrosil
specimens have the deepest and broadest infrared absorption bands, with the Corning
7940 nearly the same. The Amersil Infrasil, as the name implies is an infrared
transmitting type of fused silica, and shows only a weak water band at 2.8 microns,
its magnitude being only 0.6 cm'l, as compared to complete absorption from 2.68
to 2.82 microns for the Corning 7940 and Thermal American Spectrosil. PFigure 23
is a summary of the infrared transmissivity spectra at 22 C for these three brands.
The following figure, (Fig. 24), shows that raising the temperature of the specimens
to 800 C depresses the transmissivity of the Corning and Thermal American 30-mm
specimens from 66 to 19 percent at 3.35 microns, a wavelength between the water
band and the long wavelength cut-off. This is apparently due to a broadening of
the water band and to the long wavelength cut-off shift to shorter wavelengths.

The effect at the same wavelength on the Amersil 30-mm specimen is from 67 to 30
percent.

The transmission preoperties in the ultraviolet region may be correlated to the
amount of water in the specimens, the Thermal American having the lowest ultraviolet
cut-off wavelength and the most water (compare Fig. 23 and 25). Since the actual
cut-off wavelength is difficult to measure exactly using 30-mm specimens, the wave-
lengths at which the specimens have 1 cm“’l of absorption are compared. These wave-
lengths are approximately 0.154 microns for Thermal American Spectrosil (ST 30-4),
0.159 microns for Corning 7940 (SC 30-8), and 0.162 microns for Amersil Infrasil
(SA 30-5), as shown in Fig. 25. Heating the specimens to 800 C shifts this point
to longer wavelengths, as shown in Fig. 26. In general, the shift is some 0.015
microns.
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A comparison of transmissivity data for l-mm samples of each of the three
types of fused silica (SC 1-3, SA 1-5, and ST 1-6) is given in Figs. 27 through 29.
Because both the specimen in the sample beam and the specimen in the reference beam
have thicknesses of 1 mm, departures from 100-percent transmissivity are an indica-
tion of differences in either internal absorption coefficient or surface conditions
for the two samples employed during the tests.

Absorption coefficient data obtained on all specimens at 22 and at 800 C is.
summarized in Figs. 30 through 33. The first two figures compare the absorption
coefficient in the ultraviolet region for the three brands tested, while the =zecond
pair of figures compare the absorption in the infrared region.

Transmittance or transmissivity data were obtained at specific wavelengths as
a function of temperature for several specimens. These data are presented in Figs.
34 through 39. The transparency of the specimens drops most rapidly for the shorter
wavelengths in the ultraviolet. In the infrared region, the transparency of the
specimen at a particular wavelength and temperature depends on the location of that
wavelength with respect to the long wavelength cut-off or the 2.80 micron water
band.

POST-NUCLEAR-REACTOR-IRRADIATION STUDIES OF OPTICAL TRANSMISSION

A comparison of absorption coefficients determined for specimens following
nuclear-reactor irradiation but before annealing for wavelengths between 0.15 and
1.3 microns is given in Fig. 40 along with similar data obtained before irradiation.
It can be seen that the coloration of all specimens tested is greatest at wavelengths
below 0.3 microns. It can also be seen from Fig. 40 that a major portion of the
absorption in the ultraviolet portion of the spectrum appears to be due to a band
which is centered at a wavelength between 0.20 and 0.23 microns. The coloration
induced in the Corning 7940 and Thermal American Spectrosil specimens is small at
wavelengths above 0.3 microns, but is substantial for the Amersil Infrasil specimen
for wavelengths up to approximately 1.2 microns.

A comparison of infrared transmittance at wavelengths between 2.4 and 4.0
microns of Thermal American specimen 8T 1-6 obtained after irradiation but before
annealing with similar data cbtained from Thermal American specimen ST 1-U4 before
irradiation is given in Fig. 41. It can be seen from this figure that any effect
of nuclear-reactor irradiation in the infrared portion of the spectrum is small,
particularly relative to the coloration caused by nuclear-reactor irradiation in
the ultraviolet portion of the spectrum.
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After exposure to the nuclear-reactor irradiation, the Corning and Thermal
American specimens were transparent and slightly blue, indicating some absorption
of visible wavelengths in the yellow region around 0.62 microns. The Amersil
specimens were quite opaque, appearing purple to black. This difference in
absorption in the visible region correlates to the relatively large amount of
aluminum impurity in the Amersil and to the small amount of aluminum impurity in
the Corning and Thermal American fused silicas.

OPTICAL TRANSMISSION PROPERTIES DURING ANNEALING PROCESS

The purpose of studying the removal of reactor-induced color while a specimen
is being heated is to evaluate the rate of decrease of the optical absorption of the
specimen during the annealing process. As summarized in Tables IX and X, the
annealing studies were conducted using 15 different specimens and several types of
heating schedules. The character of the annealing data is discussed in this section,
and the rate information is discussed in the following section.

For the annealing studies, the high-temperature spectrophotometer was operated
in the one-specimen mode, yielding the transmittance of the specimen being annealed
as a function of time or wavelength, for a known heating schedule. Figures 42
through 50 present the transmittance-versus-time data during the specimen anneals.
Figures 51, 52, and 53 present transmittance data obtained at 22 C after the specimen
being studied had been annealed by exposure to various high temperatures, as obtained
using the Cary 14R spectrophotometer. The details of the variations in the transmit-
tance-versus-time curves depend on the heating schedule used, although in all cases
the transmittance increased with time during the anneal. It 1s to be noted in
particular that the coloration at wavelengths greater than 0.30 microns is rapidly
removed at moderate temperatures (Fig. 53). Further, the data in Figs. 41 and 54k in-
dicate there is little induced color in the infrared region, and that it, too,
vanishes rapidly at moderate temperatures.

The absorption coefficient due to reactor-induced coloration at a given wave-
length has been determined from data on transmittance during and after anneal at
the same temperature. This calculation has been made using the following two
equations: :
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(IS/IO) during anneal (6)
n (Is/1,) after anneal X

which yields
a n - Xs In (Tn).

The variation of reactor-induced absorption coefficient with time during anneal
is given for 11 specimens in Figs. 55 through 65. The @, values were obtained from
the transmittance data using Eq. 7. Figures 66 and 67 show the decrease of the
reactor-induced absorption in the ultraviolet region at successively higher specimen
annealing temperatures for Corning l-mm specimen SC 1-3 and for Amersil 1-mm specimen
SA 1-2. Figures 68 and 69 are comparison plots of the absorption of these two
specimens after anneals to temperatures of approximately 400 and 600 C. Figure 70
.shows that the coloration at 0.210 microns, which is approximately the center of an
absorption band, is removed from Corning, Amersil, and Thermal American specimens
by a linear temperature-versus-time heating schedule in the order (1) Thermal Ameri-
can, (2) Corning, and (3) Amersil. It is to be noted that the depth of the infrared
absorption bands for the specimens may be correlated with the temperature required for
anneal of coloration at 0.21 microns. It appears that the material with the deepest
infrared absorption bands, and containing the most watexr, has the greatest resistance
to radiation damage, and that the coloration which occurs anneals out at the lowest
temperature. Figure 71 shows the same annealing behavior as indicated in Fig. 70
for 30-mm Corning and Thermal American specimens using two different linear temperature-
versus-time heating schedules, viz., the reactor-induced color is removed from the
Thermal American specimen first.

Examination of the curves of @ _ versus time for the l-mm specimens shows that
the absorption coefficient characterizing the induced coloration at 0.21 microns is
of order 50 cm'l prior to the anneal. Thus, the anneal of coloration observed using

the 30-mm specimens is characteristic only of the tail of the full @ versus time
annealing curve and is representative of the highest activation energy present. This

will be discussed in the following section. Two such tails are compared in Fig. T2.

In this case, each specimén was subjected to an isochronal anneal of 10 min. at constant
temperature, the temperature steps increasing incrementally by 50 C. Again, the color
in the Thermal American fused silica is removed more readily than from the Corning 7940O.
For both Corning and Thermal American brands, Fig. 72 shows that the induced absorption
coefficient is reduced to zero by the 10-min. anneal at 750 C. This is to be

compared to the required temperature of 800 C when a linear temperature-versus-time
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heating schedule is used (see eurves, Fig..Tl). Similarly, the Amersil Infrasil fused
silica requires a temperature of 850 C to remove the color at 0.210 microns under an
isochronal anneal, and 900 C when a linear heating schedule is used (Figs. 61 and 67).

DETERMINATION OF ACTIVATION ENERGIES FROM ANNEALING DATA

An analysis of the annealing data, @, versus time, has been made assuming that
the removal of coloration at a given wavelength is described by a first-order kinetics
equation of the form

dan _

a7 -va  exp (-€4/kT) cm™ sec™! (8)

This equation states that the rate of decrease of induced absorption at any time is
proportional to the remaining value of the induced absorption at that time and also
proportional to a Boltzmann probability factor which contains the ratio of an activa-
tion energy €45 to the thermal energy of the specimen, kT. k is the Boltzmann constant,
T is the absolute temperature of the specimen, and kT has units of energy. The fre-
quency factor, v, is the proportionality constant, with units of inverse time, and is
interpreted as a frequency characteristic of the type of color center being annealed.

Two theoretical curves are shown in Figs. 73 and T4 which are provided as an
aid in the interpretation of the annealing data which has been shown in preceding
figures. It is seen from Fig. 73 that the variation of induced absorption coefficient
with time during a constant-temperature step is linear on a semi-log plot if a single
activation energy 1s associated with the coloration during that period of anneal.
However, it is seen from Fig. T4 that the presence of two different activation energies
in the same specimen will cause the variation of induced absorption coefficient with
time on a semi-log plot to be non-linear in nature. The experimental data on Fig. 75
and some of the experimental data on Fig. 76 are curved in a manner similar to the
theoretical data in Fig. 74, thereby indicating that the annealing process is sometimes
characterized by more than one activation energy. However, some of the data in Pig. 76
is relatively linear, indicating that at least some of the annealing process is charac-
terized by a single activation energy.

Values of the frequency factor ¥ have been obtained in some tests reported in
the literature from measurements of the change in slope on a semi-logarithmic plot of
some measure of radiation damage due to a sudden change in specimen temperature (see
data for annealing of copper in Ref. 3). Determination of the frequency factor in this
manner requires that the annealing of damage during the adjacent annealing steps be



characterized by a single activation energy for both steps. Determination of fre-
quency factors by this technique from data in the present report obtained during
tests with step-wise increases in temperature yielded inconsistent results. This
inconsistency may be due to the simultaneous anneal of several color centers
(characterized by different activation energies) according to the temperature pro-
grams used or to the time lag present in changing the temperature of the sample in
successive steps (Figs. 6 and 7).

It has been estimated by Dr. W. Dale Compton, a consultant to the Research
Laboratories, that the frequency factor v should be between 1010 and lOl sec™t.
This estimate is based on experience with determination of activation energies for
anneal of radiation-induced coloration in a number of materials. Therefore, all of
the data discussed in following paragraphs has been reduced on the basis of activa-
tion energies both of 107 and 10 sec”

Attempts have been made using several different techniques to derive activation
energies from the induced absorption coefficient curves shown in Figs. 55 through
65. The technique which has been selected for use in the present report is the
simplest of these and involves calculation of an activation energy from Eq. (8)
using values of @, and dah/dt determined at a series of different times during the
annealing process. This data reduction procedure yields exact values of activation
energy only when a single activation energy characterizes all of the change of
absorption coefficient with time for a given specimen. If two activation energies
influence the rate of change of absorption coefficient with time, the calculation
procedure employed yields a value of activation energy somewhere between the two
true activation energies. Therefore, activation energies determined in this
manner are denoted apparent activation energy, €,

Apparent activation energies determined in the manner described in the preceding
paragraph from the data shown in Figs. SE through 65 are presented in Figs. 77 through
87 for frequency factors of lOlO and 10M* sec~! as a function of the ratio an/ano.

It can be seen that the activation energies calculated for a frequency factor of lOlLL
sec'l are approximately 0.8 eV higher than those calculated for an activation energy
of 1010 gec1

A summary of values of apparent activation energy for the 11 samples for which
data are presented in Figs. 77 through 87 is shown in Fig. 88 as a function of the
absolute value of a, existing at the time for which the apparent activation energy
was determined. Approximate faired lines have been drawn through the data for each
brand of fused silica. The differences between the apparent activation energies for
each of the types of fused silica correspond to the different temperatures at which
annealing takes place for the different brands of fused silica as indicated on
Figs. TO through 72. It can be seen that the apparent activation energies for Corning
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7940 and Thermal American Spectrosil fall between 2.2 and 2.6 eV, whi
activation energies for Amersil Infrasil fall between 2.2 and 2.8 eV

V= 1010 sec l.

COMPARTISON OF OPTICAL CHARACTERISTICS
MEASURED BEFORE IRRADIATION AND AFTER ANNEALING

After the annealing tests described in the preceding section wer
portion of the transmissivity-versus-wavelength spectrum was obtained
comparison with similar data obtained at 22 C prior to the nuclear-re
process. The purpose of this comparison was to find any effects on t
properties of the specimens which could be attributed to non-removabl
damage. The comparison plots for these spscimens are presented in Fi
98. Two specimens, SA 30-1 and SA 1-1, have no comparison data, sinc
irradiation studies were conducted at wavelengths between 1.2 and 4.0
while the anneal and post-anneal studies were conducted at 0.210 micr
of some of this data for each of the three types of fused silica are
Figs. 99 through 10l. The figures show that in some cases the post-a
missivities are higher than the pre-irradiation transmissivities, and
the reverse is true. The conclusion is that the scatter in the data,
to the variati ons in handling procedure required as the experimental
is greater than any observable effect which could be correlated with -
radiation damage. These results, which were obtained following expos
of 6 x 10+7 nvt fast neutrons per cm , do not permit conclusions to b
the effect of higher dosage.
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LIST OF SYMBOLS

9( ) Exponential function

I Incident intensity of optical radistion

I, Intensity transmitted through reference specimen

Is Intensity transmitted through sample specimen

I,/1, Transmittance

k Boltzmann constant, 8.612 x 10-° eV/deg K

R Average reading

t Time, min or sec

T Temperature, deg C or deg K

Xr Reference specimen thickness, cm or mm

Xg Sample specimen thickness, cm or mm

a Absorption coefficient, em™t

Qn Nuclear-reactor-irradiation-induced absorption coefficient, cm‘l
Ano First measurable value of ay during anneal process, em~1

T Absorption coefficient, cm'l, function of A and T

€q Apparent activation energy, for anneal of reactor-induced coloration, eV
A Wavelength, microns

14 Frequency factor, sec™t

Pyt Surface reflectivity, function of A and T

o Standard deviation
T Transmissivity
Tp e (a n XS)
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Subscripts

( )theor.
()
()*

LIST OF SYMBOLS (cont'd)

Calculation from first-order kinetics
Denotes value at specific time during anneal

Denotes value at beginning of constant temperature during anneal
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APPENDIX I

The method used to obtain the values of activation energy, €qeV, from the
experimental annealing data is to associate one value of €4 with each value
of @p observed quring the annealing process. The experimental data required
are Qn and temperature as function of time, The first-order kinetics equation
used gives the relation

(dan /dt) ==Qap v exp ("fa/kT) (9)

To evaluate €q, €V, at a time, t', the slope from the @ p versus time curve at
t =t is needed as well as the temperature from the T-versus-time curve,
These values are denoted (dan/dt)y' and T',

=1 da 1
Thu —_— 240 = -
S (Van) (dt )1' exp (—€g /kT)
(10)
t
L t =1 _Y(dan ]
and € kT In [ (va'n )(df )f, (11)
With reference to Fig. 61, take t'= LOmin; T'= 879 K; a'= 8.78 cm-1;
Wan/dt)y' = -0.016 cm-lsec-1., Assuming v = (10)10 sec-1l, then €,'= 2.2 eV,
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Spectral Range

TABLE I

UAC. HIGH-TEMPERATURE SPECTROPHOTOMETER COMPONENTS

Source

Grating

Detector

0.15 to 0.4 microns

Hanovia 906 A-32
Hydrogen Discharge

Bausch & Lomb
33-53-06-05

Ascop #543-101k
Photomultiplier

0.35 to 0,65 microns

GE 9 AT-8%

Tungsten Ribbon Filament |,

Bausch & Lomb
33-53-06-34

Ascop #543-10L4

0.6 to 1,5 microns

GE 9 AT-8%

Bausch & Lomb
33-43-06-76

Infrared Industries SA-11
Lead Sulfide Cell

1.3 to 4.5 microns

Perkin Elmer 013-0059
Nernst Glower

Bausch & Lomb
33-53-06-76

Reeder RP-5W
Thermocouple




TABLE II

COMPARISON OF HIGH-TEMPERATURE SPECTROPHOTOMETER DATA UNDER VARIOUS
PHASING CONDITIONS TO CARY MODEL 14R TRANSMITTANCE DATA OBTAINED USING NEUTRAL DENSITY SCREENS

See Text for Definition of Phasing

Neutral Density Cary H,T.S. $Ig/I,| Difference | H.T.S, %Ig/I | Difference | H.T.S. %$Ig/I, | Difference
Sereen No. % Transmittance | 1% Phasing 1% Phasing | 3% Phasing 3% Phasin 5% Phasing 5% Phasin

ipe 97.70 97.80 0,10 97.80 0.10 97.60 0,10

VIII 92,40 92,70 0.30 92,80 0,ko 92,50 0,10
0.1 78,40 T7.10 1.30 77450 0.90 T7.70 0,70
0.2 62,0 62,40 0.k40 63.00 1,00 63,20 1,20
0.3 47,85 47,90 0,15 48.50 0.65 48,90 1.05

0,4 37.35 37.10 0.25 37.90 0.45 38.30 0.95

0,6 2k,30 23.90 0,40 2k.65 0.35 2k, 80 0,50

0,7 18,10 18.15 0.05 18,72 0.62 18.90 0.70

0.8 12,95 12,90 0.05 13,50 0.55 13.65 0.70

0.9 12,25 12,20 0.05 12,62 0.37 12,90 0.65

average dif;ference J 0.31 0,54 0.77 .J




Lz

TABLE III

ESTIMATED INSTRUMENT ACCURACY OF ABSORPTION COEFFICIENT MEASUREMENTS
USING U.A.C. HIGH-TEMPERATURE SPECTROPHOTOMETER

Transmissivity Absorption Coefficienf

30-mm Specimen 1-mm Specimen

T, % TUncertainty, % (@, cm"l !Uncertainty, cm‘l. @, em~l | Uncertainty, cm-1

95 +0.3 0.0172 +0.0012 0.5164 +0,033
50 +0.3 0.2310 +0,0021 6.931 +0,060




TABLE IV

SPECTROCHEMICAL ANALYSIS OF TYPICAL AMERSIL INFRASTL,
CORNING 7940 AND THFRMAL AMERICAN SPECTROSIL: FUSED SILICA SPECIMENS

Amersil Corning Thermal American

Impurity Infrasil 7940 Spectrosil
Al uminum Lo 2 1
Beryllium 0.k 0,1 < 0,5
Boron < 0.5 <0,5 2

Iron 3 2 3
Magnesium 1 1 13
Manganese 1 0.5 1
Titanium 2 0.2 0.5
Calcium 3 1 1.5
Sodium <5 <5 20

Concentration in parts per million (ppm)

All other elements undetectable

< = less than

NOTE: These materials differed in water content, which does not show up

under spectrochemical analysis--such differences do appear in

infrared absorptlon spectra.

For a comparison of the amount of

water contained in the structure of these specimens, compare the
absorption bands at 1.4 and 2.8 microns (Fig., 23)
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TABLE V

SUMMARY OF SPECIMEN HANDLING HISTORY

Pre-Heat to 850 C Nuclear
Prior to Irrad Prior to Reactor Reactor Cleaning
Brand Type Specimen Studies Irradiation Irradiated®* History®
Corning 940 SC 1-1 yes yes yes A, Dl
SC 1-2 yes yes no A
SC 1-3 yes yes yes A, cl
sC 2-10 yes yes no B2
8¢ 2-11 yes yes yes A, DL
SC 30-4 yes yes yes A, DL
Sc 30-8 yes yes yes A, cl
Amersil Infrasil SA 1-1 yes yes yes A
SA 1-2 yes yes yes A
SA 1-5 yes yes yes A, cl
SA 1-6 yes ves no A
SA 2-3 yes yes no B2
SA 8-2 yes yes no B2
SA 30-1 no yes yes A
SA 30-2 no yes yes A
SA 30-5 yes yes yes A, CL
Thermal Spectrosil ST 1-3 yes yes no A
American ST 1-6 yes " yes yes A, ¢l
ST 30-1 yes yes yes A, cl
ST 30-k4 yes yes yes ‘A, CL
ST 30-5 no yes yes A, DL

*A - Not Chemically Cleaned for Pre-Irradiation Studies

B - Chemically Cleaned for Pre-Irradiation Studies

C - Chemically Cleaned Prior to Anneal Only

D - Chemically Cleaned Prior to Irradiation and Prior to Anneal
Supersecripts: 1 - Sodium Dichromate used in Chromic Acid; 2 - Potassium Dichromate used in Chromic Acid
*¥Jee Table VI




TABLE VI

SUMMARY OF NUCLEAR-REACTOR-TRRADIATION DO

bl

28 FOR SPECIMENS TESTED

Integrated Fast® Thermal®*
Fast Neutron Neutron
Flux Flux Flux
Brand Type Specimen Neutrons/cm2 -Neutrons/cme-sec Neutrons/cmg-sec
Amersil | Infrasil SA 6.36(10)L7 k,11(10)12 Not monitored
SA 6,36(10)L7 4,11(10)12 -
SA 6.36(10)L7 4,11(10)L2 -
SA 6.36(10)17 L,11(10)%2 -
Amersil | Infrasil SA 7,38(10)17 5,0(10)12 1.4(10)15
SA 7.38(10)17 5.,0(10)12 1.4(10)13
Corning | T9LO sc 7.38(20)%7 5,0(10)12 1.4(10)13
sC 7.38(10)17 5,0(10)12 1.4(10)13
Thermal | Spectrosil| ST 7,38(10)17 5,0(10)12 1.4(10)13
American ST 7.38(10)L7 5,0(10)1e 1.4(10)13
ST - 7.38(10)17 5,0(10)12 1,4(10)13
Corning | T9LO sC 8,3(10)17 5,5(10)12 1,9(10)%3
sc 8,3(10)%7 5,5(10)12 1,9(10)%3
sC 8.,3(10)t 5,5(10)+2 1.,9(10)13
Thermal | Spectrosil| ST 8,3(10)+7 5,5(10)12 1,9(10)13
American

*Fast neutron (energy >0,4 mev) flux monitor - nickel wire
*¥Thermal neutron flux monitor - gold wire and gold wire with cadmium shield

See Table VII for comparison of fast neutron flux over length of sample container
during nuclear reactor irradiation




TABLE VII

VARTIATION OF FAST NEUTRON FLUX WITH POSITION
OF SPECIMEN IN NUCLEAR REACTOR

Fast Neutron
Flux™
Group Position Neutrons/cm2-sec
Top 4,3 (10)L2
2 Center 4,2 (10)12
Bottom 4,8 (10)12
Top 5.5 (10)12
3 Center 5,6 (10)12
Bottom 5.5 (10)12

UACRL nickel wire monitor; specimen holder length:

31

8.12 inches



TABLE VIII

SUMMARY OF PRE-IRRADTATION MEASUREMENT CONDITIONS

411 Measurements Made on UAC Dual-Beam High-Temperature Spectrophotometer

44

Sagple Beam Reference Beam
Manufacturer Type Specimen | Thickness| Specimen | Thickness Temperature Wavelength Range
mm mm deg C Microns

Corning 940 5C 1.1 1 ——- - 22,256,524 ,800,1070 | 0,15 = 1.5
sC 1-3 1 ¢ 1-2 1 22,800 0.15—= 4,0
sC 2-11 2 - - 22,256,524 ,800,1070 | 0,15~ 1.5
SC 30-b 30 sc 1-3 1 22,800 0,15— 0.65, 1.2—= 4,0
3¢ 30-8 30 8¢ 1-2 1 22,800 0.15- 4.0

Amersil Infrasil SA 1-5 1 SA 1-6 1 22,800 0.15— 4,0
sA 8.2 8 SA 2-3 2 22,230,420,620,860 | 0.15—= 4.0
SA 30-1 30 SA 1-1 1 22,310,568,854 1.2 = 4.0
SA 30-2 30 SA 1-2 1 22,310,568,854 0,15 0,65, 1,2 = 4,0
SA 30-5 30 SA 1-6 1 22,800 0.15— 4,0

Thermal Spectrosil| ST 1-6 1 ST 1-3 1 22,800 0,15= 4.0

American ST 30-1 30 ST 1-3 1 22,204 ,416,628,800 | 0.15— 4,0
ST 30-1 30 ST 1-6 1 22,800 0.,15— 0,65, 1,2== 4,0
ST 304 30 8T 1-3 1 22,800 0,15—= 4,0
ST 30-5 30 ST 1-3 1 22,738 0.,15-= 0,65, 1.,2=— 4,0
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TABLE IX

SUMMARY OF ANNEALING MEASUREMENT CONDITIONS

*
See Table X for class code

[ Annealing Temp. | Wavelength Span Single Wavelength
t. - History ' of Observation of Observation
i Brand Type Specimen Class Detail Microns Microns
Corning 7940 SC 1-1 F --- ‘ - 0,215
| 5C 1-3 B tg=10min | 0,15 - 0,25 0,215
* sC 2-11 G - ’ --- 0.215
SC 30-L c to = 44 min - 0,210
sc 30-8 C to = 88 min - 0,210
Amersil Infrasil SA 1-1 D -——— 0.2 - 2,0 -——
SA 1-2 B tB = 10 min 0,15 - 1,4 0,21
SA 1-5 C te = 88 min -—- 0,21
SA 30-1 E --- - 0,21
SA 30-2 E ——= --- 0.23
SA 30-5 B tg = 10 min 2.2 - k4.0 3.15
Thermal Spectrosil ST 1-6 c tg = 88 min - 0,16k
American ST 30-1 C te = 88 min - 0.215
ST 30-4 C to = bl min -—- 0.215
ST 30-5 A tp = 10 min - 0.215
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TABLE X

CLASS CODE FOR TABLE IX

50 C step in 10 min. intervals

50 C incremental rise after drop to
temperature at which data was taken

Linear

D.

E.

F.

Specimen heated in 25 C incremental steps.
Held at each temperature until equilibrium
coloration attained.

Observed on Cary - 14

Spectrophotometer at 22 C.

Approximately lin.: 22-1000 C in 90 min.

Step: 22 C to 646 C; held until no further
change observed, then specimen completely
annealed.,

Step: 22 C to 708 C; held until no further
change observed, then specimen completely
annealed.
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SPECIMEN DATA TO FIGURE NUMBER CROSS-REFERENCE INDEX

Post-Irradiation Annealing Activation | Pre-Irradiation vs
Specimen Pre-Irradiation - 22 C Pre-Irradiation - 800 C Pre-Anneel Vlo vst apvs 1 ﬂn/ﬂnn"' Energy Post-Annesl Comments
Ultraviolet | Visible| Infrared| Ultraviolet] Visible| Infrared| Uv-Vis, IR
sC 1-1 |10,3% 34 4o 42 55 17 8
s¢ 1-3 |27 o7 et o7 27 et 43 56,66, 68 it 78 98
69,72
|sc 2-109,11 9
sc 2-11 !10,11,12,35 12 12,35 12 b 57 (el 90,99
3 |
§5C 30-4 | ! ] 45 58,7 80 91,99
I :
fsc 30-8 | 14,17,25 1 | 1%,20,23| 1%,17,26 i [as,20,28! w0 16 59,70,71 81 92,99 i
|sA 11 : 51,52,53 |
Jsa 12 J 60,67,68,69 ' g2 93
{SA 1-5 |28 28 28 28 28 1 28 L0 T 61,70 83 98
) B i ;
18A 8-2 |36 37 36 [ i 37 ‘
1 |
SA 30-1 ! 1 Test specimen; fiim
i on surfaces - no datal
SA30-2 |8 8 i 62 84 93,100
SA 30-5 |8,15,18,25 15 |1s,21,23| 8,15,18,26 15 | 15,21,2 5k 9l
ST 1-6 {29 29 29 29 29 29 4o b1 98 Measured for anneal
at 0,164 microns;
temperature effect
overrides anneal.
ST 30-1 (13,38 13 |39 13,38 13 39 Lo 48 63,70,T1 85 95,1001
ST 30-4 |16,19,25 16 | 16,22,23{ 16,19,26 16 | 16,22,2L 'T] 64, TL 86 96,101
ST 30-5 50 65,72 871 97,101
Summary | 30 32 3 33 ko 88 99,100,101
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INFRARED

SPECTRUM OPERATION

UAC HIGH-TEMPERATURE SPECTROPHOTOMETER
SEE FIG.2 FOR EXPLANATION OF NUMBER CODE

VISIBLE
SPECTRUM OPERATION

ULTRAVIOLET
SPECTRUM OPERATION
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NUMBER CODE USED IN FIG. |

TUNGSTEN LAMP

SOURCE SELECTING MIRROR
SPHERICAL MIRROR
ENTRANCE SLIT

BAND PASS FILTERS
PARABOLIC MIRROR
DIFFRACTION GRATING

EXIT SLIT

PARABOLIC MIRROR

10 FOLDING MIRRORS

Il VISIBLE & ULTRAVIOLET CHOPPER

i2 FURNACE TUBE

13 SPECIMEN

(4 FURNACE ELECTRODES

15 PHOTOMULTIPLIER TUBE

16 LEAD SULFIDE DETECTOR
I7 HYDROGEN DISCHARGE LAMP
I8 NERST GLOWER ASSEMBLY
19 INFRARED CHOPPER

20 THERMOCOUPLE DETECTOR
21 VACUUM VALVES

22 VACUUM CHAMBERS

2 9lid



FIG. 3 .

REPRODUCIBILITY OF UAC HIGH-TEMPERATURE
SPECTROPHOTOMETER READINGS AT ROOM TEMPERATURE

IN EITHER. BEAM
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FIG. 4

REPRODUCIBILITY OF UAC HIGH-TEMPERATURE

SPECTROPHOTOMETER WAVELENGTH
MEASUREMENTS AT ROOM TEMPERATURE USING

INTERFERENCE FILTER

A 0.3901 micron

.ALL DATA POINTS TAKEN ON SAME DAY
AVERAGE VALUE = 0.390l6microns

STANDARD DEVIATION

t 0.00007microns

L1l 0.39016 microns
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MODES OF OPERATION OF UAC

SOQOURCE

a
MONOCHROMATOR

SOURCE
8
MONOCHROMATOR

REFERENCE BEAM

e I,
SAMPLE BEAM
D -
I, il I
— Xg—
I - SPECIMEN MODE
REFERENCE BEAM
N A
[ Y
- =X,

‘SAMPLE BEAM
¥__»____ 220 4
1o = I
[V —

2 -~ SPECIMEN MODE

HIGH-TEMPERATURE

¢ 9id

SPECTROPHOTOMETER

DETECTOR

RECORDER ——— DATA :

TRANSMITTANCE

DETECTOR [—]

- 2 _-q X
15/10 = (I_PXT) e TS
,L';\ T = SURFACE REFLECTIVITY
a)\T = ABSORPTION COEFFICIENT
Xg¢ = SAMPLE SPECIMEN
THICKNESS
RECORDER ™ DATA:
TRANSMISSIVITY
I./1
T = s 0 =e-ux'T(Xs-Xr)
1,./1,

TRANSMITTANCE OF SAMPLE SPECIMEN

TRANSMITTANCE OF REFERENCE SPECIMEN



FIG. 6
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FIG. 7

30mm SPECIMEN TEMPERATURE CALIBRATION

WITH FAST TEMPERATURE CHANGE

O TEMPERATURE AT CENTER OF SPECIMEN
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T — percent

TRANSMISSIVITY,

COMPARISON OF THE EFFECT OF TEMPERATURE ON THE TRANSMISSIVITY
OF NON-PRE-HEATED AND PRE-HEATED AMERSIL 30 mm SPECIMENS

SAMPLE BEAM: AMERSIL 30 mm SPECIMEN SA30-2 SAMPLE BEAM: AMERSIL 30 mm SPECIMEN SA30-5
REFERENCE BEAM: AMERSIL | mm SPECIMEN SA -2 REFERENCE BEAM: AMERSIL | mm SPECIMEN SA |- 6

NOT PRE-HEATED PRE-HEATED TO 850 C
NOT CHEMICALLY CLEANED . NOT CHEMICALLY CLEANED
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FIG. 9

EFFECT OF HEATING ON THE TRANSMITTANCE OF THE

CHEMICALLY CLEAN CORNING 2mm SPECIMEN SC 2-10

PRE -HEATED TO 850 C
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FIG.

COMPARISON OF 22C TRANSMITTANCES OF TWO

CORNING 2mm SPECIMENS SUBJECTED TO

DIFFERENT CLEANING PROCEDURES
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EFFECT OF TEMPERATURE ON THE TRANSMITTANCE OF CORNING 2 mm SPECIMEN SC2-Ii
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VARIATION OF TRANSMISSIVITY WITH WAVELENGTH OF THERMAL AMERICAN 30mm SPECIMEN ST 30-4
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7

FIG.

ULTRAVIOLET TRANSMlSSIVITY OF CORNING 30 mm
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TRAN SMISSIVITY, T — percent
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19
ULTRAVIOLET TRANSMISSIVITY OF THERMAL AMERICAN

FIG.

30 mm SPECIMEN ST 30-4
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FIG. 20
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FIG. 22
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COMPARISON OF 22 C INFRARED TRANSMISSIVITY OF CORNING,
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FiG. 24

COMPARISON OF 800 C INFRARED TRANSMISSIVITY OF CORNING,

AMERSIL, AND THERMAL AMERICAN 30 mm SPECIMENS
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FIG. 25
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FIG. 26

COMPARISON OF 800C ULTRAVIOLET TRANSMISSIVITY OF CORNING,

AND THERMAL AMERICAN 30 mm SPECIMENS
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c9

TRANSMISSIVITY, T - percent

VARIATION OF TRANSMISSIVITY WITH WAVELENGTH OF
CORNING tmm SPECIMEN SCI-3

SYMBOL TEMP C SAMPLE BEAM REFERENCE BEAM HISTORY
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VARIATION OF TRANSMISSIVITY WITH WAVELENGTH OF

Imm SPECIMEN SA 1-5

AMERSIL

FIG. 28
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VARIATION OF TRANSMISSIVITY WITH WAVELENGTH OF

FIG. 29
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Fi1IG. 30

SUMMARY OF THE 22 C ULTRAVIOLET ABSORPTION
COEFFICIENT DATA FOR CORNING, AMERSIL, AND THERMAL

AMERICAN BRANDS OF FUSED SILICA

SYMBOL BRAND T HISTORY
3 23';';'2"2 PRE-HEATED TO 850C
s N —WERICAN | NOT CHEMICALLY CLEANED |
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FIG. 31

SUMMARY OF THE 800C ULTRAVIOLET ABSORPTION
COEFFICIENT DATA FOR CORNING, AMERSIL, AND THERMAL
AMERICAN BRANDS OF FUSED SILICA
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FIG. 32

SUMMARY OF THE 22C INFRARED ABSORPTION
COEFFICIENT DATA FOR CORNING, AMERSIL, AND THERMAL
AMERICAN BRANDS OF FUSED SILICA

SYMBOL BRAND HISTORY
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SUMMARY OF THE 800 C INFRARED ABSORPTION

FiG.

COEFFICIENT DATA FOR CORNING, AMERSIL, AND THERMAL
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FiG. 34

VARIATION OF ULTRAVIOLET TRANSMITTANCE OF CORNING
I mm SPECIMEN SC i-1 WITH TEMPERATURE

HISTORY - PRE-HEATED TO 850 C~ NOT CHEMICALLY CLEANED
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F1G. 35

VARIATION OF ULTRAVIOLET TRANSMITTANCE OF CORNING
2 mm SPECIMEN SC 2-{l WITH TEMPERATURE

HISTORY - PRE-HEATED TO 850 C~ NOT CHEMICALLY CLEANED
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FIG. 36

VARIATION OF ULTRAVIOLET TRANSMISSIVITY OF AMERSIL
8 mm SPECIMEN SA8-2 WITH TEMPERATURE

’ HISTORY - PRE-HEATED TO 850 C - NOT CHEMICALLY CLEANED
REFERENCE BEAM - SPECIMEN SA2-3
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FIG. 37

TRANSMISSIVITY ,T - percent

VARIATION OF INFRARED TRANSMISSIVITY OF AMERSIL

8 mm SPECIMEN SA 8-2 WITH TEMPERATURE

HISTORY - PRE-HEATED TO 850 C —NOT CHEMICALLY CLEANED

REFERENCE BEAM - SPECIMEN SA 2-3
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FIG. 38

TRANSMISSIVITY

OF ULTRAVIOLET
OF THERMAL AMERICAN 30mm

VARIATION

SPECIMEN ST 30-1

WITH TEMPERATURE
HISTORY - PRE-HEATED TO 850C - NOT CHEMICALLY CLEANED

REFERENCE BEAM ST1-3

,-W2 - D 'INJIDI44300 NOILJHOSEY

.80

1.0
1.5

= 00

vI1EL Y

T i
e

i

i

i
i

7

pE

T

i yeldaks
ien\ngnngs

+nrd

BT
t T

R

FHTT
P

M

[etaas

100

90

80

70
60 i
50
a0

yusosad - 1 ‘A LIAISSINSNYHL

20

10

400

1000 1200 1400

800

600

200

SPECIMEN TEMPERATURE , T - deg. C

T3



FI1G. 39

AMERICAN 30 mm SPECIMEN ST 30-I

TRANSMISSIVITY ,T — percent

VARIATION OF INFRARED TRANSMISSIVITY OF THERMAL

HISTORY - PRE-HEATED TO B850 C—~NOT CHEMICALLY CLEANED
REFERENCE BEAM- SPECIMEN ST 1-3
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FIG. 40

COMPARISON OF PRE-IRRADIATION TO POST-IRRADIATION,
PRE-ANNEAL 22C ABSORPTION COEFFICIENT DATA FOR
CORNING, AMERSIL, AND THERMAL AMERICAN SPECIMENS
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INFRARED TRANSMITTANCE OF THERMAL

COMPARISON OF 22C

FIG. 41
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FIG. 42
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FiG. 43

| mm SPECIMEN

SC 1-3 MEASURED AT 0.215 microns DURING ANNEAL
OF REACTOR-INDUCED COLOR

VARIATION OF TRANSMITTANCE OF CORNING

IN REFERENCE BEAM
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FI1G. 44

VARIATION OF TRANSMITTANCE OF CORNING 2mm SPECIMEN

DURING ANNEAL

MEASURED AT 0.215 microns

SC 2-1l

OF REACTOR-INDUCED COLOR

IN REFERENCE BEAM

NO SPECIMEN
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IN REFERENCE BEAM

OF REACTOR-INDUCED COLOR
NO SPECIMEN

VARIATION OF TRANSMITTANCE OF CORNING 30mm SPECIMEN
SC30-4 MEASURED AT 0.215 microns DURING ANNEAL
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FIG. 46

VARIATION OF TRANSMITTANCE OF CORNING 30mm SPECIMEN
SC30-8 MEASURED AT 0.210 microns DURING ANNEAL
OF REACTOR-INDUCED COLOR

NO SPECIMEN IN REFERENCE BEAM

100 . . —-1000

90 950

80 , 2 900

70 e i 850
- (&)
g o
(%) .13
> o
& 60 800 |
| H -
L &
o ] =
L 50 i il ; 750 &
8 w
z =
& w
- -
= 40 700 =z
73] ; W
Z y =
[14 Q
[ w
&

30 650

20 600

10 550

0. z 500

40 44 48 52 56 60 64 68

TIME FROM BEGINNING OF ANNEAL, t-minutes

81




FIG. 47

| mm SPECIMEN

SA 1-5 MEASURED AT 0.210 microns DURING ANNEAL

VARIATION OF TRANSMITTANCE OF AMERSIL

OF REACTOR-INDUCED COLOR
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TRANSMITTANCE , Ly/T, — percent

FiG. 48

VARIATION OF TRANSMITTANCE OF THERMAL AMERICAN
30 mm SPECIMEN ST 30-1 MEASURED AT 0.210 microns

DURING ANNEAL OF REACTOR-INDUCED COLOR
NO SPECIMEN IN REFERENCE BEAM
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F1G. 49

VARIATION OF TRANSMITTANCE OF THERMAL AMERICAN
30mm SPECIMEN ST 30-4 MEASURED AT 0.215 microns
DURING ANNEAL OF REACTOR-INDUCED COLOR

NO SPECIMEN IN REFERENCE BEAM
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FiG. 50

VARIATION OF TRANSMITTANCE OF THERMAL AMERICAN
30mm SPECIMEN ST 30-5 MEASURED AT 0.2i5 microns

DURING ANNEAL OF REACTOR-INDUCED COLOR

NO SPECIMEN IN REFERENCE BEAM
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FIG. 51

VARIATION OF 22 C TRANSMITTANCE OF AMERSIL Imm
SPECIMEN SAl-1 MEASURED AT 0210 microns DURING
ANNEAL OF REACTOR -INDUCED COLOR

MEASUREMENTS MADE AT 22 C USING CARY 14R SPECTROPHOTOMETER

SPECIMEN RETURNED TO EACH INDICATED TEMPERATURE
UNTIL NO CHANGE IN TRANSMITTANCE WAS OBSERVED
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TRANSMITTANCE , T /T - percent

FIG. 52

VARIATION OF 22 C TRANSMITTANCE OF AMERSIL Imm

SPECIMEN SAI-I

MEASUREMENTS MADE AT 22 C USING CARY

ANNEAL OF REACTOR-INDUCED COLOR

SPECIMEN RETURNED TO EACH INDICATED TEMPERATURE
UNTIL NO CHANGE IN TRANSMITTANCE WAS OBSERVED
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22 C TRANSMITTANCE OF AMERSIL
AT CONSTANT TEMPERATURE UNTIL NO CHANGE OF ABSORPTION WAS OBSERVED

FIG. 53
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FIG. 54
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MEASURED AT

INDUCED ABSORPTION COEFFICIENT FOR
0.215 microns DURING ANNEAL OF

REACTOR-INDUCED COLOR

mm SPECIMEN SC 1 -1
@, VALUES BASED ON DATA FROM FIG. 42

VARIATION OF
CORNING

FIG. 55
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FIG. 56

INDUCED ABSORPTION COEFFICIENT FOR

VARIATION OF

3 MEASURED AT

0.215 microns DURING ANNEAL OF

mm SPECIMEN SC

CORNING

-INDUCED COLOR

REACTOR

a, VALUES BASED ON DATA FROM FIG. 43
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FIG. 57

INDUCED ABSORPTION COEFFICIENT FOR

VARIATION OF

MEASURED AT

"CORNING 2 mm SPECIMEN SCZ2-1i

0.215 microns DURING ANNEAL OF

REACTOR -INDUCED COLOR

a, VALUES BASED ON DATA FROM FIG. 44

2 68p— L 'INNIVY IdWIL NIWIDIJS

T g g e

Sy e Faes i pu e praasmarat ol EEORLETTRL

. u.A,I.wlll;rl.A.lUrroL_!rl.»_l II[V!‘.;I“'A.,.AHJATI[ =

B et | fen e

7 : R beE:
- e LJIL\IQLL’_AVII~."L

2 oS 11

Rty s ganevinag

_-Euucd.kzw_o_uuuoo NOILdH0S8Y (Q30NANI -¥0.10V3yd

BEGINNING OF ANNEAL ,t-minutes

TIME FROM

92



FIG. 58

INDUCED ABSORPTION COEFFICIENT FOR
DURING ANNEAL OF

REACTOR-INDUCED COLOR
a, VALUES BASED ON DATA FROM FIG. 45

0.215 microns
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B i TR

FIG. 59

VARIATION OF INDUCED ABSORPTION COEFFICIENT FOR

CORNING 30mm SPECIMEN SC30-8 MEASURED AT
0.210 microns DURING ANNEAL OF

REACTOR - INDUCED COLOR

an, VALUES BASED ON DATA FROM FIG. 46
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REACTOR-INDUCED ABSORPTION COEFFICIENT @n—cm

FIG. 60

VARIATION OF INDUCED ABSORPTION COEFFICIENT FOR

AMERSIL

32

0.210 microns DURING ANNEAL OFfF
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FI1G. 61

VARIATION OF INDUCED ABSORPTION COEFFICIENT FOR
AMERSIL | mm SPECIMEN SA1-5 MEASURED AT

0.210 microns DURING ANNEAL OF
REACTOR - INDUCED COLOR

@, VALUES BASED ON DATA FROM FIG. 47

32 m s + - ; = 1000
‘j_:‘::: R : H :::11. 1 H R ;_1‘ PRy bhy x:i#t‘-_ Fy g—
f : it H i
5 HEH :
;: i --"‘ILH- #1117
28 = T : ITIEE (Tt A 900
HH- -+ : pays ¥ j 1’ l-_ P H H14H
T f2adas 1T 25 Hjawa sk "*'é‘ 15 “"“i-ql’ akydes.
E * =X o
© 3 11§ T i
i it 31 i .
g 24 e Bl At 800
- e 1 158 o H
= 31 - T b w*: saga on
5 % i HEEHA p FHHE
— g T HH
O s 3t H
b [ L] ye +
b H i A 5__;-_‘_‘ 4
w 20 S s L 700
u iy AT F
Q £8: h T
o H\ i ¥
BR Sy freedly
Z - = -+
o : HiEY : e
- 16 et ; 600
o I easey Ly H '
m T
[@} -+
n T3
o ] AL : :
P seissis s
o 12 ; S i 500
w T
Q X t
=] / %
(o]
=
! 8 400
a
e
Q
<
w
@ :
4 300
T iHH 2 200

0 T Y a
10 20 30 40 50 60 70 80
TIME FROM BEGINNING OF ANNEAL ,t-minutes

96

SPECIMEN TEMPERATURE, T —~deg C




FIG. 61

INDUCED ABSORPTION COEFFICIENT FOR
mm SPECIMEN SA -5 MEASURED AT

VARIATION OF
AMERSIL

0.210 microns

DURING ANNEAL OF

REACTOR - INDUCED COLOR

an, VALUES BASED ON DATA FROM FI|G. 47
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FIG. 62

INDUCED ABSORPTION COEFFICIENT FOR

AMERSIL 3O mm SPECIMEN SA30-2 MEASURED AT

VARIATION OF

DURING ANNEAL OF

0.23 microns

REACTOR - INDUCED COLOR
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FIG. 63

INDUCED ABSORPTION COEFFICIENT FOR

THERMAL AMERICAN 30 mm SPECIMEN ST 30-1i

VARIATION OF

MEASURED AT 0.210 microns

OF REACTOR-INDUCED COLOR

@, VALUES BASED ON DATA FROM FIG. 48
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FIG. 64

VARIATION OF INDUCED ABSORPTION COEFFICIENT FOR

<~ CAN 30 mm SPECIMEN ST 30-4

THERMAL AMC

DURING ANNEAL

MEASURED AT 0.215 microns

-INDUCED COLOR

OF REACTOR

VALUES BASED ON DATA FROM FiG. 49
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FIG. 65

VARIATION OF INDUCED ABSORPTION COEFFICIENT FOR

MAL AMERICAN 30 mm SPECIMEN ST 30-5

THER

DURING ANNEAL
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FIG. 66

REMAINING REACTOR-INDUCED COLOR

AFTER CUMULATIVE 50 C
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INCREMENT,
TEMPERATURE ANNEALS FOR CORNING
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FIG. 67

REMAINING REACTOR-INDUCED COLOR AFTER

te -CONSTANT-TEMPERATURE

-minu
ANNEALS FOR AMERSIL Imm SPECIMEN SAI1-2
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FIG. 68

COMPARISON OF REMAINING REACTOR-INDUCED COLOR

-minute-

10

INCREMENT,

AFTER CUMULATIVE 50 C

CONSTANT-TEMPERATURE ANNEALS FOR AMERSIL

SILICAS

AND CORNING FUSED
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AT TEMPERATURE NOTED ON CURVE
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FIG. 69

COMPARISON OF REMAINING REACTOR-INDUCED COLOR AFTER

INCREMENT, 10-minute -CONSTANT-TEMPE RATURE
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AND

AMERSIL,

COMPARISON OF ANNEALING RESULTS FOR CORNING,

THERMAL AMERICAN SPECIMENS AT 0.210 microns

FIG. 70
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COMPARISON OF ANNEALING RESULTS FOR CORNING AND
THERMAL AMERICAN 30 mm SPECIMENS
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FiG. 72

COMPARISON OF ANNEALING RESULTS FOR CORNING
AND THERMAL AMERICAN SPECIMENS MEASURED
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FIG. 73

THEORETICAL NORMALIZED INDUCED ABSORPTION COEFFICIENT
WITH FIRST ORDER KINETICS AND SINGLE

ACTIVATION ENERGY

3.30 eV, v = 10" sec”!

——- 350eV,v = 107 sec!
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FIG. 74
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FIG. 75

INDUCED ABSORPTION COEFFICIENT

WITH TIME FROM BEGINNING OF ANNEAL FOR CORNING

VARIATION OF NOR MALIZED

3 AT 0.215 microns
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FIG. 76

VARIATION OF NORMALIZED

INDUCED ABSORPTION COEFFICIENT

WITH TIME FROM BEGINNING OF ANNEAL FOR AMERSIL

Imm SPECIMEN SA 1-2 AT 0.210 microns

VALUES BASED ON DATA FROM FIG. 60
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~INDUCED ABSORPTION

APPARENT ACTIVATION ENERGY VS REACTOR

F1G.

AT 0. 215 microns

imm SPECIMEN SCi-1|

COEFFICIENT FOR CORNING
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APPARENT ACTIVATION ENERGY 1€q —eV

APPARENT ACTIVATION ENERGY VS REACTOR-INDUCED ABSORPTION
COEFFICIENT FOR CORNING Imm SPECIMEN SCI1-3 AT 0.2I15 microns
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FIG. 79

APPARENT ACTIVATION ENERGY VS REACTOR-INDUCED ABSORPTION
COEFFICIENT FOR CORNING 2mm SPECIMEN SC2-11 AT 0.215 microns

Ov =10 sec™
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APPARENT ACTIVATION ENERGY VS REACTOR-INDUCED ABSORPTION
COEFFICIENT FOR CORNING 30mm SPECIMEN SC30-4 AT 0.215 microns
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FIG. 81i
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APPARENT ACTIVATION ENERGY VS REACTOR-INDUCED ABSORPTION

COEFFICIENT FOR AMERSIL Imm SPECIMEN SA I-2 AT 0.210 microns
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FIG. 83

Imm SPECIMEN SAI1-5 AT 0.210 microns

APPARENT ACTIVATION ENERGY VS REACTOR-INDUCED ABSORPTION

COEFFICIENT FOR AMERSIL
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APPARENT ACTIVATION ENERGY €, -eV

APPARENT ACTIVATION ENERGY VS REACTOR-INDUCED ABSORPTION
COEFFICIENT FOR AMERSIL 30mm SPECIMEN SA 30-2 AT 0.23microns
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-INDUCED ABSORPTION

APPARENT ACTIVATION ENERGY VS REACTOR

FIG. 85

ST 30-1

AT 0.210 microns

COEFFICIENT FOR THERMAL AMERICAN 30mm SPECIMEN
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APPARENT ACTIVATION ENERGY 1€, - eV

APPARENT ACTIVATION ENERGY VS REACTOR-INDUCED ABSORPTION
COEFFICIENT FOR THERMAL AMERICAN 30mm SPECIMEN ST 30-4
AT 0.215 microns
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FIG. 87

APPARENT ACTIVATION ENERGY VS REACTOR-INDUCED ABSORPTION
AT 0.215 microns

COEFFICIENT FOR THERMAL AMERICAN 3Omm SPECIMEN ST 30-5
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SUMMARIES OF VALUES OF APPARENT ACTIVATION ENERGY FOR CORNING,

AMERSIL, AND THERMAL AMERICAN SPECIMENS
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FIG. 89

COMPARISON OF 22C TRANSMITTANCE OF CORNING | mm SPECIMEN SC i-I

PRIOR TO REACTOR IRRADIATION AND AFTER ANNEAL OF INDUCED COLOR
SAMPLE BEAM ' REFERENCE BEAM ]
SYMBOL TEMP € THICKNESS, mm | SPECIMEN | THICKNESS, mm SPECIMEN |
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F1G6. 90

COMPARISON OF 22C TRANSMITTANCE OF CORNING 2 mm SPECIMEN SC 2-11

INDUCED COLOR

IRRADIATION AND AFTER ANNEAL OF

PRIOR TO REACTOR
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FIG. 91

COMPARISON OF 22C TRANSMISSIVITY OF CORNING 30mm SPECIMEN SC30-4

wd - D ‘IN3ID144300 NOILJHOSEY

IRRADIATION AND AFTER ANNEAL OF INDUCED COLOR
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FIG. 92

COMPARISON OF 22C TRANSMISSIVITY OF CORNING 30mm SPECIMEN SC30-8
PRIOR TO REACTOR IRRADIATION AND AFTER ANNEAL OF INDUCED COLOR
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FIG. 93

COMPARISON OF 22C TRANSMISSIVITY OF AMERSIL 30 mm SPECIMEN SA30-2

PRIOR TO REACTOR

IRRADIATION AND AFTER ANNEAL OF INDUCED COLOR
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FiG. 94

COMPARISON OF 22C TRANSMISSIVITY OF AMERSIL 30mm SPECIMEN SA 30-5

- D

‘INI1D144300 NOILINOSEY

PRIOR TO REACTOR IRRADIATION AND AFTER ANNEAL OF INDUCED COLOR
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'SPECIMEN
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REFERENCE BEAM
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SYMBOL

FIG. 95

COMPARISON OF 22C TRANSMISSIVITY OF THERMAL AMERICAN 30 mm SPECIMEN
ST 30-1 PRIOR TO REACTOR IRRADIATION AND AFTER ANNEAL OF INDUCED COLOR
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FIG. 96
COMPARISON OF 22C TRANSMISSIVITY OF THERMAL AMERICAN 30 mm SPECIMEN

ST 30-4 PRIOR TO REACTOR IRRADIATION AND AFTER ANNEAL OF INDUCED COLOR
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FIG. 97

COMPARISON OF 22C TRANSMISSIVITY OF THERMAL AMERICAN 30 mm SPECMEN
ST30-5 PRIOR TO REACTOR IRRADIATION AND AFTER ANNEAL OF INDUCED COLOR
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FIG. 98
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FIG. 99

COMPARISON OF 22C ABSORPTION COEFFICIENT DATA OF
CORNING SPECIMENS PRIOR TO REACTOR IRRADIATION
AND AFTER ANNEAL OF INDUCED COLOR
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PRE ~IRRADIATION | -=-—~- NOTED ON CURVES ]
o} SC30-8 VS sCi-2
POST-~ANNEAL A sC2-Il VS SC -1
. [} §C30-4 VS sCi-3

ABSORPTION COEFFICIENT,g2~-cm™

0.14 0.15 0.6 0.7 0.18 0.9 020

WAVELENGTH, A -microns

/
/

134



ABSORPTION COEFFICIENT, @-cm
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COMPARISON OF 22C ABSORPTION COEFFICIENT DATA OF
AMERSIL SPECIMENS PRIOR TO REACTOR IRRADIATION
AND AFTER ANNEAL OF INDUCED COLOR
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FIG. 101

COMPARISON OF 22C ABSORPTION COEFFICIENT DATA OF THERMAL

AMERICAN SPECIMENS PRIOR TO REACTOR IRRADIATION
AND AFTER ANNEAL OF INDUCED COLOR
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